Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Features Learned by an Enhanced Deep Knowledge Tracing Model for STEM/Non-STEM Job Prediction (1806.03256v1)

Published 6 Jun 2018 in cs.CY, cs.AI, and cs.LG

Abstract: The 2017 ASSISTments Data Mining competition aims to use data from a longitudinal study for predicting a brand-new outcome of students which had never been studied before by the educational data mining research community. Specifically, it facilitates research in developing predictive models that predict whether the first job of a student out of college belongs to a STEM (the acronym for science, technology, engineering, and mathematics) field. This is based on the student's learning history on the ASSISTments blended learning platform in the form of extensive clickstream data gathered during the middle school years. To tackle this challenge, we first estimate the expected knowledge state of students with respect to different mathematical skills using a deep knowledge tracing (DKT) model and an enhanced DKT (DKT+) model. We then combine the features corresponding to the DKT/DKT+ expected knowledge state with other features extracted directly from the student profile in the dataset to train several machine learning models for the STEM/non-STEM job prediction. Our experiments show that models trained with the combined features generally perform better than the models trained with the student profile alone. Detailed analysis of the student's knowledge state reveals that, when compared with non-STEM students, STEM students generally show a higher mastery level and a higher learning gain in mathematics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zizheng Lin (6 papers)
  2. Kai Yang (187 papers)
  3. Chun-Kit Yeung (3 papers)
  4. Dit-Yan Yeung (78 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.