Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resource Provisioning and Scheduling Algorithm for Meeting Cost and Deadline-Constraints of Scientific Workflows in IaaS Clouds (1806.02397v1)

Published 6 Jun 2018 in cs.DC

Abstract: Infrastructure as a Service model of cloud computing is a desirable platform for the execution of cost and deadline constrained workflow applications as the elasticity of cloud computing allows large-scale complex scientific workflow applications to scale dynamically according to their deadline requirements. However, scheduling of these multitask workflow jobs in a distributed computing environment is a computationally hard multi-objective combinatorial optimization problem. The critical challenge is to schedule the workflow tasks whilst meeting user quality of service (QoS) requirements and the application's deadline. The existing research work not only fails to address this challenge but also do not incorporate the basic principles of elasticity and heterogeneity of computing resources in cloud environment. In this paper, we propose a resource provisioning and scheduling algorithm to schedule the workflow applications on IaaS clouds to meet application deadline constraints while optimizing the execution cost. The proposed algorithm is based on the nature-inspired population based Intelligent Water Drop (IWD) optimization algorithm. The experimental results in the simulated environment of CloudSim with four real-world workflow applications demonstrates that IWD algorithm schedules workflow tasks with optimized cost within the specified deadlines. Moreover, the IWD algorithm converges fast to near optimal solution.

Citations (1)

Summary

We haven't generated a summary for this paper yet.