Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Hierarchical Item Categories from Implicit Feedback Data for Efficient Recommendations and Browsing (1806.02056v2)

Published 6 Jun 2018 in cs.IR and cs.AI

Abstract: Searching, browsing, and recommendations are common ways in which the "choice overload" faced by users in the online marketplace can be mitigated. In this paper we propose the use of hierarchical item categories, obtained from implicit feedback data, to enable efficient browsing and recommendations. We present a method of creating hierarchical item categories from implicit feedback data only i.e., without any other information on the items like name, genre etc. Categories created in this fashion are based on users' co-consumption of items. Thus, they can be more useful for users in finding interesting and relevant items while they are browsing through the hierarchy. We also show that this item hierarchy can be useful in making category based recommendations, which makes the recommendations more explainable and increases the diversity of the recommendations without compromising much on the accuracy. Item hierarchy can also be useful in the creation of an automatic item taxonomy skeleton by bypassing manual labeling and annotation. This can especially be useful for small vendors. Our data-driven hierarchical categories are based on hierarchical latent tree analysis (HLTA) which has been previously used for text analysis. We present a scaled up learning algorithm \emph{HLTA-Forest} so that HLTA can be applied to implicit feedback data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.