Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating option prices using multilevel particle filters (1806.01734v1)

Published 5 Jun 2018 in q-fin.CP

Abstract: Option valuation problems are often solved using standard Monte Carlo (MC) methods. These techniques can often be enhanced using several strategies especially when one discretizes the dynamics of the underlying asset, of which we assume follows a diffusion process. We consider the combination of two methodologies in this direction. The first is the well-known multilevel Monte Carlo (MLMC) method, which is known to reduce the computational effort to achieve a given level of mean square error relative to MC in some cases. Sequential Monte Carlo (or the particle filter (PF)) methods have also been shown to be beneficial in many option pricing problems potentially reducing variances by large magnitudes (relative to MC). We propose a multilevel particle filter (MLPF) as an alternative approach to price options. The computational savings obtained in using MLPF over PF for pricing both vanilla and exotic options is demonstrated via numerical simulations.

Summary

We haven't generated a summary for this paper yet.