Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-efficient localised rollback after failures via data flow analysis (1806.01611v1)

Published 5 Jun 2018 in cs.DC

Abstract: Exascale systems will suffer failures hourly. HPC programmers rely mostly on application-level checkpoint and a global rollback to recover. In recent years, techniques reducing the number of rolling back processes have been implemented via message logging. However, the log-based approaches have weaknesses, such as being dependent on complex modifications within an MPI implementation, and the fact that a full restart may be required in the general case. To address the limitations of all log-based mechanisms, we return to checkpoint-only mechanisms, but advocate data-flow-driven recovery (DFR), a fundamentally different approach relying on analysis of the data flow of iterative codes, and the well-known concept of data-flow graphs. We demonstrate the effectiveness of DFR for an MPI stencil code to optimise rollback and reduce the overall energy consumption by 10-12 % on idling nodes during localised rollback. We also provide large-scale estimates for the energy savings of DFR compared to global rollback, which for stencil codes increase as n square for a process count n.

Summary

We haven't generated a summary for this paper yet.