Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short rainbow cycles in graphs and matroids (1806.00825v3)

Published 3 Jun 2018 in math.CO and cs.DM

Abstract: Let $G$ be a simple $n$-vertex graph and $c$ be a colouring of $E(G)$ with $n$ colours, where each colour class has size at least $2$. We prove that $(G,c)$ contains a rainbow cycle of length at most $\lceil \frac{n}{2} \rceil$, which is best possible. Our result settles a special case of a strengthening of the Caccetta-H\"aggkvist conjecture, due to Aharoni. We also show that the matroid generalization of our main result also holds for cographic matroids, but fails for binary matroids.

Citations (14)

Summary

We haven't generated a summary for this paper yet.