Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Scraping and Preprocessing Commercial Auction Data for Fraud Classification (1806.00656v2)

Published 2 Jun 2018 in cs.LG and stat.ML

Abstract: In the last three decades, we have seen a significant increase in trading goods and services through online auctions. However, this business created an attractive environment for malicious moneymakers who can commit different types of fraud activities, such as Shill Bidding (SB). The latter is predominant across many auctions but this type of fraud is difficult to detect due to its similarity to normal bidding behaviour. The unavailability of SB datasets makes the development of SB detection and classification models burdensome. Furthermore, to implement efficient SB detection models, we should produce SB data from actual auctions of commercial sites. In this study, we first scraped a large number of eBay auctions of a popular product. After preprocessing the raw auction data, we build a high-quality SB dataset based on the most reliable SB strategies. The aim of our research is to share the preprocessed auction dataset as well as the SB training (unlabelled) dataset, thereby researchers can apply various machine learning techniques by using authentic data of auctions and fraud.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.