Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Signal and Noise Statistics Oblivious Orthogonal Matching Pursuit (1806.00650v1)

Published 2 Jun 2018 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: Orthogonal matching pursuit (OMP) is a widely used algorithm for recovering sparse high dimensional vectors in linear regression models. The optimal performance of OMP requires \textit{a priori} knowledge of either the sparsity of regression vector or noise statistics. Both these statistics are rarely known \textit{a priori} and are very difficult to estimate. In this paper, we present a novel technique called residual ratio thresholding (RRT) to operate OMP without any \textit{a priori} knowledge of sparsity and noise statistics and establish finite sample and large sample support recovery guarantees for the same. Both analytical results and numerical simulations in real and synthetic data sets indicate that RRT has a performance comparable to OMP with \textit{a priori} knowledge of sparsity and noise statistics.

Citations (16)

Summary

We haven't generated a summary for this paper yet.