Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological dualities in the Ising model (1806.00008v4)

Published 31 May 2018 in math.AT, cond-mat.str-el, hep-th, math-ph, and math.MP

Abstract: We relate two classical dualities in low-dimensional quantum field theory: Kramers-Wannier duality of the Ising and related lattice models in $2$ dimensions, with electromagnetic duality for finite gauge theories in $3$ dimensions. The relation is mediated by the notion of boundary field theory: Ising models are boundary theories for pure gauge theory in one dimension higher. Thus the Ising order/disorder operators are endpoints of Wilson/'t Hooft defects of gauge theory. Symmetry breaking on low-energy states reflects the multiplicity of topological boundary states. In the process we describe lattice theories as (extended) topological field theories with boundaries and domain walls. This allows us to generalize the duality to non-abelian groups; finite, semi-simple Hopf algebras; and, in a different direction, to finite homotopy theories in arbitrary dimension.

Citations (59)

Summary

We haven't generated a summary for this paper yet.