Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Traffic-Sign Recognition with Scale-aware CNN (1805.12289v1)

Published 31 May 2018 in cs.CV

Abstract: The paper presents a Traffic Sign Recognition (TSR) system, which can fast and accurately recognize traffic signs of different sizes in images. The system consists of two well-designed Convolutional Neural Networks (CNNs), one for region proposals of traffic signs and one for classification of each region. In the proposal CNN, a Fully Convolutional Network (FCN) with a dual multi-scale architecture is proposed to achieve scale invariant detection. In training the proposal network, a modified "Online Hard Example Mining" (OHEM) scheme is adopted to suppress false positives. The classification network fuses multi-scale features as representation and adopts an "Inception" module for efficiency. We evaluate the proposed TSR system and its components with extensive experiments. Our method obtains $99.88\%$ precision and $96.61\%$ recall on the Swedish Traffic Signs Dataset (STSD), higher than state-of-the-art methods. Besides, our system is faster and more lightweight than state-of-the-art deep learning networks for traffic sign recognition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yuchen Yang (60 papers)
  2. Shuo Liu (123 papers)
  3. Wei Ma (106 papers)
  4. Qiuyuan Wang (11 papers)
  5. Zheng Liu (312 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.