Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of the State-of-the-Art Parallel Multiple Sequence Alignment Algorithms on Multicore Systems (1805.12223v1)

Published 30 May 2018 in cs.CE and q-bio.GN

Abstract: Evolutionary modeling applications are the best way to provide full information to support in-depth understanding of evaluation of organisms. These applications mainly depend on identifying the evolutionary history of existing organisms and understanding the relations between them, which is possible through the deep analysis of their biological sequences. Multiple Sequence Alignment (MSA) is considered an important tool in such applications, where it gives an accurate representation of the relations between different biological sequences. In literature, many efforts have been put into presenting a new MSA algorithm or even improving existing ones. However, little efforts on optimizing parallel MSA algorithms have been done. Nowadays, large datasets become a reality, and big data become a primary challenge in various fields, which should be also a new milestone for new bioinformatics algorithms. This survey presents four of the state-of-the-art parallel MSA algorithms, TCoffee, MAFFT, MSAProbs, and M2Align. We provide a detailed discussion of each algorithm including its strengths, weaknesses, and implementation details and the effectiveness of its parallel implementation compared to the other algorithms, taking into account the MSA accuracy on two different datasets, BAliBASE and OXBench.

Citations (2)

Summary

We haven't generated a summary for this paper yet.