Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Biologically Motivated Algorithms for Propagating Local Target Representations (1805.11703v3)

Published 26 May 2018 in cs.NE, cs.LG, and stat.ML

Abstract: Finding biologically plausible alternatives to back-propagation of errors is a fundamentally important challenge in artificial neural network research. In this paper, we propose a learning algorithm called error-driven Local Representation Alignment (LRA-E), which has strong connections to predictive coding, a theory that offers a mechanistic way of describing neurocomputational machinery. In addition, we propose an improved variant of Difference Target Propagation, another procedure that comes from the same family of algorithms as LRA-E. We compare our procedures to several other biologically-motivated algorithms, including two feedback alignment algorithms and Equilibrium Propagation. In two benchmarks, we find that both of our proposed algorithms yield stable performance and strong generalization compared to other competing back-propagation alternatives when training deeper, highly nonlinear networks, with LRA-E performing the best overall.

Citations (83)

Summary

We haven't generated a summary for this paper yet.