Like a Baby: Visually Situated Neural Language Acquisition (1805.11546v2)
Abstract: We examine the benefits of visual context in training neural LLMs to perform next-word prediction. A multi-modal neural architecture is introduced that outperform its equivalent trained on language alone with a 2\% decrease in perplexity, even when no visual context is available at test. Fine-tuning the embeddings of a pre-trained state-of-the-art bidirectional LLM (BERT) in the LLMing framework yields a 3.5\% improvement. The advantage for training with visual context when testing without is robust across different languages (English, German and Spanish) and different models (GRU, LSTM, $\Delta$-RNN, as well as those that use BERT embeddings). Thus, LLMs perform better when they learn like a baby, i.e, in a multi-modal environment. This finding is compatible with the theory of situated cognition: language is inseparable from its physical context.
- Alexander G. Ororbia (15 papers)
- Ankur Mali (37 papers)
- Matthew A. Kelly (1 paper)
- David Reitter (17 papers)