Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CoupleNet: Paying Attention to Couples with Coupled Attention for Relationship Recommendation (1805.11535v1)

Published 29 May 2018 in cs.CL, cs.AI, cs.IR, and cs.NE

Abstract: Dating and romantic relationships not only play a huge role in our personal lives but also collectively influence and shape society. Today, many romantic partnerships originate from the Internet, signifying the importance of technology and the web in modern dating. In this paper, we present a text-based computational approach for estimating the relationship compatibility of two users on social media. Unlike many previous works that propose reciprocal recommender systems for online dating websites, we devise a distant supervision heuristic to obtain real world couples from social platforms such as Twitter. Our approach, the CoupleNet is an end-to-end deep learning based estimator that analyzes the social profiles of two users and subsequently performs a similarity match between the users. Intuitively, our approach performs both user profiling and match-making within a unified end-to-end framework. CoupleNet utilizes hierarchical recurrent neural models for learning representations of user profiles and subsequently coupled attention mechanisms to fuse information aggregated from two users. To the best of our knowledge, our approach is the first data-driven deep learning approach for our novel relationship recommendation problem. We benchmark our CoupleNet against several machine learning and deep learning baselines. Experimental results show that our approach outperforms all approaches significantly in terms of precision. Qualitative analysis shows that our model is capable of also producing explainable results to users.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi Tay (94 papers)
  2. Anh Tuan Luu (69 papers)
  3. Siu Cheung Hui (30 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.