Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Differential Entropy of Mixtures: New Bounds and Applications (1805.11257v2)

Published 29 May 2018 in cs.IT, math.IT, and math.PR

Abstract: Mixture distributions are extensively used as a modeling tool in diverse areas from machine learning to communications engineering to physics, and obtaining bounds on the entropy of probability distributions is of fundamental importance in many of these applications. This article provides sharp bounds on the entropy concavity deficit, which is the difference between the entropy of the mixture and the weighted sum of entropies of constituent components. Toward establishing lower and upper bounds on the concavity deficit, results that are of importance in their own right are obtained. In order to obtain nontrivial upper bounds, properties of the skew-divergence are developed and notions of "skew" $f$-divergences are introduced; a reverse Pinsker inequality and a bound on Jensen-Shannon divergence are obtained along the way. Complementary lower bounds are derived with special attention paid to the case that corresponds to independent summation of a continuous and a discrete random variable. Several applications of the bounds are delineated, including to mutual information of additive noise channels, thermodynamics of computation, and functional inequalities.

Citations (13)

Summary

We haven't generated a summary for this paper yet.