Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Poisson Gamma Probabilistic Model for Latent Node-group Memberships in Dynamic Networks (1805.11054v1)

Published 28 May 2018 in cs.SI

Abstract: We present a probabilistic model for learning from dynamic relational data, wherein the observed interactions among networked nodes are modeled via the Bernoulli Poisson link function, and the underlying network structure are characterized by nonnegative latent node-group memberships, which are assumed to be gamma distributed. The latent memberships evolve according to Markov processes. The optimal number of latent groups can be determined by data itself. The computational complexity of our method scales with the number of non-zero links, which makes it scalable to large sparse dynamic relational data. We present batch and online Gibbs sampling algorithms to perform model inference. Finally, we demonstrate the model's performance on both synthetic and real-world datasets compared to state-of-the-art methods.

Citations (19)

Summary

We haven't generated a summary for this paper yet.