Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of micro-macro acceleration schemes for linear slow-fast stochastic differential equations with additive noise (1805.10219v3)

Published 25 May 2018 in math.NA and cs.NA

Abstract: Computational multi-scale methods capitalize on a large time-scale separation to efficiently simulate slow dynamics over long time intervals. For stochastic systems, one often aims at resolving the statistics of the slowest dynamics. This paper looks at the efficiency of a micro-macro acceleration method that couples short bursts of stochastic path simulation with extrapolation of spatial averages forward in time. To have explicit derivations, we elicit an amenable linear test equation containing multiple time scales. We make derivations and perform numerical experiments in the Gaussian setting, where only the evolution of mean and variance matters. The analysis shows that, for this test model, the stability threshold on the extrapolation step is largely independent of the time-scale separation. In consequence, the micro-macro acceleration method increases the admissible time steps far beyond those for which a direct time discretization becomes unstable.

Citations (2)

Summary

We haven't generated a summary for this paper yet.