Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Underwater Fish Species Classification using Convolutional Neural Network and Deep Learning (1805.10106v1)

Published 25 May 2018 in cs.CV

Abstract: The target of this paper is to recommend a way for Automated classification of Fish species. A high accuracy fish classification is required for greater understanding of fish behavior in Ichthyology and by marine biologists. Maintaining a ledger of the number of fishes per species and marking the endangered species in large and small water bodies is required by concerned institutions. Majority of available methods focus on classification of fishes outside of water because underwater classification poses challenges such as background noises, distortion of images, the presence of other water bodies in images, image quality and occlusion. This method uses a novel technique based on Convolutional Neural Networks, Deep Learning and Image Processing to achieve an accuracy of 96.29%. This method ensures considerably discrimination accuracy improvements than the previously proposed methods.

Citations (125)

Summary

We haven't generated a summary for this paper yet.