Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions (1805.10093v2)

Published 25 May 2018 in math.AP

Abstract: In this work we study the existence of solutions to the critical Brezis-Nirenberg problem when one deals with the spectral fractional Laplace operator and mixed Dirichlet-Neumann boundary conditions, i.e., $$ \left{\begin{array}{rcl} (-\Delta)su & = & \lambda u+u{2_s*-1},\quad u>0\quad\mbox{in}\quad \Omega,\ u & = & 0\quad\mbox{on}\quad \Sigma_{\mathcal{D}},\ \displaystyle\frac{\partial u}{\partial \nu} & = & 0\quad\mbox{on}\quad \Sigma_{\mathcal{N}}, \end{array}\right. $$ where $\Omega\subset\mathbb{R}N$ is a regular bounded domain, $\frac{1}{2}<s<1$, $2_s*$ is the critical fractional Sobolev exponent, $0\le\lambda\in \mathbb{R}$, $\nu$ is the outwards normal to $\partial\Omega$, $\Sigma_{\mathcal{D}}$, $\Sigma_{\mathcal{N}}$ are smooth $(N-1)$-dimensional submanifolds of $\partial\Omega$ such that $\Sigma_{\mathcal{D}}\cup\Sigma_{\mathcal{N}}=\partial\Omega$, $\Sigma_{\mathcal{D}}\cap\Sigma_{\mathcal{N}}=\emptyset$, and $\Sigma_{\mathcal{D}}\cap\overline{\Sigma}_{\mathcal{N}}=\Gamma$ is a smooth $(N-2)$-dimensional submanifold of $\partial\Omega$.

Summary

We haven't generated a summary for this paper yet.