Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

struc2gauss: Structural Role Preserving Network Embedding via Gaussian Embedding (1805.10043v2)

Published 25 May 2018 in cs.SI and cs.LG

Abstract: Network embedding (NE) is playing a principal role in network mining, due to its ability to map nodes into efficient low-dimensional embedding vectors. However, two major limitations exist in state-of-the-art NE methods: role preservation and uncertainty modeling. Almost all previous methods represent a node into a point in space and focus on local structural information, i.e., neighborhood information. However, neighborhood information does not capture global structural information and point vector representation fails in modeling the uncertainty of node representations. In this paper, we propose a new NE framework, struc2gauss, which learns node representations in the space of Gaussian distributions and performs network embedding based on global structural information. struc2gauss first employs a given node similarity metric to measure the global structural information, then generates structural context for nodes and finally learns node representations via Gaussian embedding. Different structural similarity measures of networks and energy functions of Gaussian embedding are investigated. Experiments conducted on real-world networks demonstrate that struc2gauss effectively captures global structural information while state-of-the-art network embedding methods fail to, outperforms other methods on the structure-based clustering and classification task and provides more information on uncertainties of node representations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.