Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Inference in Multi-task Cox Process Models (1805.09781v3)

Published 24 May 2018 in stat.ML and cs.LG

Abstract: We generalize the log Gaussian Cox process (LGCP) framework to model multiple correlated point data jointly. The observations are treated as realizations of multiple LGCPs, whose log intensities are given by linear combinations of latent functions drawn from Gaussian process priors. The combination coefficients are also drawn from Gaussian processes and can incorporate additional dependencies. We derive closed-form expressions for the moments of the intensity functions and develop an efficient variational inference algorithm that is orders of magnitude faster than competing deterministic and stochastic approximations of multivariate LGCP, coregionalization models, and multi-task permanental processes. Our approach outperforms these benchmarks in multiple problems, offering the current state of the art in modeling multivariate point processes.

Citations (8)

Summary

We haven't generated a summary for this paper yet.