Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian predictive densities as an interpretation of a class of Skew--Student $t$ distributions with application to medical data (1805.09468v1)

Published 24 May 2018 in stat.ME

Abstract: This paper describes a new Bayesian interpretation of a class of skew--Student $t$ distributions. We consider a hierarchical normal model with unknown covariance matrix and show that by imposing different restrictions on the parameter space, corresponding Bayes predictive density estimators under Kullback-Leibler loss function embrace some well-known skew--Student $t$ distributions. We show that obtained estimators perform better in terms of frequentist risk function over regular Bayes predictive density estimators. We apply our proposed methods to estimate future densities of medical data: the leg-length discrepancy and effect of exercise on the age at which a child starts to walk.

Summary

We haven't generated a summary for this paper yet.