Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictive Local Smoothness for Stochastic Gradient Methods (1805.09386v1)

Published 23 May 2018 in cs.LG, math.OC, and stat.ML

Abstract: Stochastic gradient methods are dominant in nonconvex optimization especially for deep models but have low asymptotical convergence due to the fixed smoothness. To address this problem, we propose a simple yet effective method for improving stochastic gradient methods named predictive local smoothness (PLS). First, we create a convergence condition to build a learning rate which varies adaptively with local smoothness. Second, the local smoothness can be predicted by the latest gradients. Third, we use the adaptive learning rate to update the stochastic gradients for exploring linear convergence rates. By applying the PLS method, we implement new variants of three popular algorithms: PLS-stochastic gradient descent (PLS-SGD), PLS-accelerated SGD (PLS-AccSGD), and PLS-AMSGrad. Moreover, we provide much simpler proofs to ensure their linear convergence. Empirical results show that the variants have better performance gains than the popular algorithms, such as, faster convergence and alleviating explosion and vanish of gradients.

Citations (1)

Summary

We haven't generated a summary for this paper yet.