Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Thompson Sampling for Graphical Bandits Without the Graphs (1805.08930v1)

Published 23 May 2018 in stat.ML, cs.AI, and cs.LG

Abstract: We study multi-armed bandit problems with graph feedback, in which the decision maker is allowed to observe the neighboring actions of the chosen action, in a setting where the graph may vary over time and is never fully revealed to the decision maker. We show that when the feedback graphs are undirected, the original Thompson Sampling achieves the optimal (within logarithmic factors) regret $\tilde{O}\left(\sqrt{\beta_0(G)T}\right)$ over time horizon $T$, where $\beta_0(G)$ is the average independence number of the latent graphs. To the best of our knowledge, this is the first result showing that the original Thompson Sampling is optimal for graphical bandits in the undirected setting. A slightly weaker regret bound of Thompson Sampling in the directed setting is also presented. To fill this gap, we propose a variant of Thompson Sampling, that attains the optimal regret in the directed setting within a logarithmic factor. Both algorithms can be implemented efficiently and do not require the knowledge of the feedback graphs at any time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fang Liu (801 papers)
  2. Zizhan Zheng (33 papers)
  3. Ness Shroff (51 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.