Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solvability of nonlocal systems related to peridynamics (1805.08817v1)

Published 22 May 2018 in math.AP

Abstract: In this work, we study the Dirichlet problem associated with a strongly coupled system of nonlocal equations. The system of equations comes from a linearization of a model of peridynamics, a nonlocal model of elasticity. It is a nonlocal analogue of the Navier-Lam\'e system of classical elasticity. The leading operator is an integro-differential operator characterized by a distinctive matrix kernel which is used to couple differences of components of a vector field. The paper's main contributions are proving well-posedness of the system of equations and demonstrating optimal local Sobolev regularity of solutions. We apply Hilbert space techniques for well-posedness. The result holds for systems associated with kernels that give rise to non-symmetric bilinear forms. The regularity result holds for systems with symmetric kernels that may be supported only on a cone. For some specific kernels associated energy spaces are shown to coincide with standard fractional Sobolev spaces.

Summary

We haven't generated a summary for this paper yet.