Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SqueezeJet: High-level Synthesis Accelerator Design for Deep Convolutional Neural Networks (1805.08695v1)

Published 6 May 2018 in cs.CV and cs.AR

Abstract: Deep convolutional neural networks have dominated the pattern recognition scene by providing much more accurate solutions in computer vision problems such as object recognition and object detection. Most of these solutions come at a huge computational cost, requiring billions of multiply-accumulate operations and, thus, making their use quite challenging in real-time applications that run on embedded mobile (resource-power constrained) hardware. This work presents the architecture, the high-level synthesis design, and the implementation of SqueezeJet, an FPGA accelerator for the inference phase of the SqueezeNet DCNN architecture, which is designed specifically for use in embedded systems. Results show that SqueezeJet can achieve 15.16 times speed-up compared to the software implementation of SqueezeNet running on an embedded mobile processor with less than 1% drop in top-5 accuracy.

Citations (10)

Summary

We haven't generated a summary for this paper yet.