Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three-dimensional non-orthogonal multiple-relaxation-time lattice Boltzmann model for multiphase flows (1805.08643v1)

Published 22 May 2018 in physics.comp-ph

Abstract: In the classical multiple-relaxation-time (MRT) lattice Boltzmann (LB) method, the transformation matrix is formed by constructing a set of orthogonal basis vectors. In this paper, a theoretical and numerical study is performed to investigate the capability and efficiency of a non-orthogonal MRT-LB model for simulating multiphase flows. First, a three-dimensional non-orthogonal MRT-LB is proposed. A non-orthogonal MRT collision operator is devised based on a set of non-orthogonal basis vectors, through which the transformation matrix and its inverse matrix are considerably simplified as compared with those of an orthogonal MRT collision operator. Furthermore, through the Chapman-Enskog analysis, it is theoretically demonstrated that the three-dimensional non-orthogonal MRT-LB model can correctly recover the macroscopic equations at the Navier-Stokes level in the low Mach number limit. Numerical comparisons between the non-orthogonal MRT-LB model and the usual orthogonal MRT-LB model are made by simulating multiphase flows on the basis of the pseudopotential multiphase LB approach. The numerical results show that, in comparison with the usual orthogonal MRT-LB model, the non-orthogonal MRT-LB model can retain the numerical accuracy while simplifying the implementation.

Summary

We haven't generated a summary for this paper yet.