Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite- Size Scaling of Correlation Function (1805.08607v2)

Published 22 May 2018 in cond-mat.stat-mech

Abstract: We propose the finite-size scaling of correlation function in a finite system near its critical point. At a distance ${\bf r}$ in the finite system with size $L$, the correlation function can be written as the product of $|{\bf r}|{-(d-2+\eta)}$ and its finite-size scaling function of variables ${\bf r}/L$ and $tL{1/\nu}$, where $t=(T-T_c)/T_c$. The directional dependence of correlation function is nonnegligible only when $|{\bf r}|$ becomes compariable with $L$. This finite-size scaling of correlation function has been confirmed by correlation functions of the Ising model and the bond percolation in two-diemnional lattices, which are calculated by Monte Carlo simulation. We can use the finite-size scaling of correlation function to determine the critical point and the critical exponent $\eta$.

Summary

We haven't generated a summary for this paper yet.