Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

More Consequences of Falsifying SETH and the Orthogonal Vectors Conjecture (1805.08554v1)

Published 22 May 2018 in cs.CC and cs.DS

Abstract: The Strong Exponential Time Hypothesis and the OV-conjecture are two popular hardness assumptions used to prove a plethora of lower bounds, especially in the realm of polynomial-time algorithms. The OV-conjecture in moderate dimension states there is no $\epsilon>0$ for which an $O(N{2-\epsilon})\mathrm{poly}(D)$ time algorithm can decide whether there is a pair of orthogonal vectors in a given set of size $N$ that contains $D$-dimensional binary vectors. We strengthen the evidence for these hardness assumptions. In particular, we show that if the OV-conjecture fails, then two problems for which we are far from obtaining even tiny improvements over exhaustive search would have surprisingly fast algorithms. If the OV conjecture is false, then there is a fixed $\epsilon>0$ such that: (1) For all $d$ and all large enough $k$, there is a randomized algorithm that takes $O(n{(1-\epsilon)k})$ time to solve the Zero-Weight-$k$-Clique and Min-Weight-$k$-Clique problems on $d$-hypergraphs with $n$ vertices. As a consequence, the OV-conjecture is implied by the Weighted Clique conjecture. (2) For all $c$, the satisfiability of sparse TC1 circuits on $n$ inputs (that is, circuits with $cn$ wires, depth $c\log n$, and negation, AND, OR, and threshold gates) can be computed in time ${O((2-\epsilon)n)}$.

Citations (40)

Summary

We haven't generated a summary for this paper yet.