Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anime Style Space Exploration Using Metric Learning and Generative Adversarial Networks (1805.07997v1)

Published 21 May 2018 in cs.CV and stat.ML

Abstract: Deep learning-based style transfer between images has recently become a popular area of research. A common way of encoding "style" is through a feature representation based on the Gram matrix of features extracted by some pre-trained neural network or some other form of feature statistics. Such a definition is based on an arbitrary human decision and may not best capture what a style really is. In trying to gain a better understanding of "style", we propose a metric learning-based method to explicitly encode the style of an artwork. In particular, our definition of style captures the differences between artists, as shown by classification performances, and such that the style representation can be interpreted, manipulated and visualized through style-conditioned image generation through a Generative Adversarial Network. We employ this method to explore the style space of anime portrait illustrations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sitao Xiang (9 papers)
  2. Hao Li (803 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.