Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-view Sentence Representation Learning (1805.07443v1)

Published 18 May 2018 in cs.CL, cs.LG, cs.NE, and stat.ML

Abstract: Multi-view learning can provide self-supervision when different views are available of the same data. The distributional hypothesis provides another form of useful self-supervision from adjacent sentences which are plentiful in large unlabelled corpora. Motivated by the asymmetry in the two hemispheres of the human brain as well as the observation that different learning architectures tend to emphasise different aspects of sentence meaning, we create a unified multi-view sentence representation learning framework, in which, one view encodes the input sentence with a Recurrent Neural Network (RNN), and the other view encodes it with a simple linear model, and the training objective is to maximise the agreement specified by the adjacent context information between two views. We show that, after training, the vectors produced from our multi-view training provide improved representations over the single-view training, and the combination of different views gives further representational improvement and demonstrates solid transferability on standard downstream tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.