Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast approximation of centrality and distances in hyperbolic graphs (1805.07232v1)

Published 17 May 2018 in cs.DS

Abstract: We show that the eccentricities (and thus the centrality indices) of all vertices of a $\delta$-hyperbolic graph $G=(V,E)$ can be computed in linear time with an additive one-sided error of at most $c\delta$, i.e., after a linear time preprocessing, for every vertex $v$ of $G$ one can compute in $O(1)$ time an estimate $\hat{e}(v)$ of its eccentricity $ecc_G(v)$ such that $ecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta$ for a small constant $c$. We prove that every $\delta$-hyperbolic graph $G$ has a shortest path tree, constructible in linear time, such that for every vertex $v$ of $G$, $ecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta$. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of $G$, the smaller its eccentricity is. We also show that the distance matrix of $G$ with an additive one-sided error of at most $c'\delta$ can be computed in $O(|V|2\log2|V|)$ time, where $c'< c$ is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.

Citations (4)

Summary

We haven't generated a summary for this paper yet.