Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Model Counting by Partial Knowledge Compilation (1805.07180v1)

Published 18 May 2018 in cs.AI

Abstract: Model counting is the problem of computing the number of satisfying assignments of a given propositional formula. Although exact model counters can be naturally furnished by most of the knowledge compilation (KC) methods, in practice, they fail to generate the compiled results for the exact counting of models for certain formulas due to the explosion in sizes. Decision-DNNF is an important KC language that captures most of the practical compilers. We propose a generalized Decision-DNNF (referred to as partial Decision-DNNF) via introducing a class of new leaf vertices (called unknown vertices), and then propose an algorithm called PartialKC to generate randomly partial Decision-DNNF formulas from the given formulas. An unbiased estimate of the model number can be computed via a randomly partial Decision-DNNF formula. Each calling of PartialKC consists of multiple callings of MicroKC, while each of the latter callings is a process of importance sampling equipped with KC technologies. The experimental results show that PartialKC is more accurate than both SampleSearch and SearchTreeSampler, PartialKC scales better than SearchTreeSampler, and the KC technologies can obviously accelerate sampling.

Summary

We haven't generated a summary for this paper yet.