Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Parametric Approach to Handle Missing Longitudinal Outcome Data in Trial-Based Health Economic Evaluations (1805.07147v1)

Published 18 May 2018 in stat.ME

Abstract: Trial-based economic evaluations are typically performed on cross-sectional variables, derived from the responses for only the completers in the study, using methods that ignore the complexities of utility and cost data (e.g. skewness and spikes). We present an alternative and more efficient Bayesian parametric approach to handle missing longitudinal outcomes in economic evaluations, while accounting for the complexities of the data. We specify a flexible parametric model for the observed data and partially identify the distribution of the missing data with partial identifying restrictions and sensitivity parameters. We explore alternative nonignorable scenarios through different priors for the sensitivity parameters, calibrated on the observed data. Our approach is motivated by, and applied to, data from a trial assessing the cost-effectiveness of a new treatment for intellectual disability and challenging behaviour.

Summary

We haven't generated a summary for this paper yet.