Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Style Obfuscation by Invariance (1805.07143v1)

Published 18 May 2018 in cs.CL

Abstract: The task of obfuscating writing style using sequence models has previously been investigated under the framework of obfuscation-by-transfer, where the input text is explicitly rewritten in another style. These approaches also often lead to major alterations to the semantic content of the input. In this work, we propose obfuscation-by-invariance, and investigate to what extent models trained to be explicitly style-invariant preserve semantics. We evaluate our architectures on parallel and non-parallel corpora, and compare automatic and human evaluations on the obfuscated sentences. Our experiments show that style classifier performance can be reduced to chance level, whilst the automatic evaluation of the output is seemingly equal to models applying style-transfer. However, based on human evaluation we demonstrate a trade-off between the level of obfuscation and the observed quality of the output in terms of meaning preservation and grammaticality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chris Emmery (11 papers)
  2. Enrique Manjavacas (5 papers)
  3. Grzegorz ChrupaƂa (33 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.