Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating the Koebe radius for polynomials (1805.06927v1)

Published 17 May 2018 in math.CV

Abstract: For a pair of conjugate trigonometrical polynomials $C (t) = \sum_ { j = 1 } N { { a_j}\cos jt }, S(t) = \sum_ { j = 1 } N { { a_j}\sin jt }$ with real coefficients and normalization ${a_1} = 1 $ we solve the extremal problem [ \sup_ {a_2,...,a_N} \left ({ \min_t \left{ {\Re \left ({ F\left ({ { e^ {it} } } \right) } \right): \Im \left ({ F\left ({ { e^ {it} } } \right) } \right) = 0 } \right} } \right) = -\frac14 \sec 2\frac\pi{N + 2}. ] We show that the solution is unique and is given by [ a_j^ {(0)} = \frac {1} { { { U'N}\left ({\cos \frac{\pi } { { N + 2 } } } \right) } } { U' _ { N - j + 1 } }\left ({\cos \frac{\pi } { { N + 2 } } } \right) { U { j - 1 } }\left ({\cos \frac{\pi } { { N + 2 } } } \right), ] where the $U_j(x)$ are the Chebyshev polynomials of the second kind, and the $U'_j(x)$ are their derivatives, $j = 1, \ldots, N.$ As a consequence, we obtain some theorems on covering of intervals by polynomial images of the unit disc. We formulate several conjectures on a number of extremal problems on classes of polynomials.

Summary

We haven't generated a summary for this paper yet.