Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DNN or k-NN: That is the Generalize vs. Memorize Question (1805.06822v6)

Published 17 May 2018 in cs.LG, cs.AI, and stat.ML

Abstract: This paper studies the relationship between the classification performed by deep neural networks (DNNs) and the decision of various classical classifiers, namely k-nearest neighbours (k-NN), support vector machines (SVM) and logistic regression (LR), at various layers of the network. This comparison provides us with new insights as to the ability of neural networks to both memorize the training data and generalize to new data at the same time, where k-NN serves as the ideal estimator that perfectly memorizes the data. We show that memorization of non-generalizing networks happens only at the last layers. Moreover, the behavior of DNNs compared to the linear classifiers SVM and LR is quite the same on the training and test data regardless of whether the network generalizes. On the other hand, the similarity to k-NN holds only at the absence of overfitting. Our results suggests that k-NN behavior of the network on new data is a sign of generalization. Moreover, it shows that memorization and generalization, which are traditionally considered to be contradicting to each other, are compatible and complementary.

Citations (38)

Summary

We haven't generated a summary for this paper yet.