Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The higher rank $q$-deformed Bannai-Ito and Askey-Wilson algebra (1805.06642v2)

Published 17 May 2018 in math.QA, math-ph, and math.MP

Abstract: The $q$-deformed Bannai-Ito algebra was recently constructed in the threefold tensor product of the quantum superalgebra $\mathfrak{osp}_q(1\vert 2)$. It turned out to be isomorphic to the Askey-Wilson algebra. In the present paper these results will be extended to higher rank. The rank $n-2$ $q$-Bannai-Ito algebra $\mathcal{A}_nq$, which by the established isomorphism also yields a higher rank version of the Askey-Wilson algebra, is constructed in the $n$-fold tensor product of $\mathfrak{osp}_q(1\vert 2)$. An explicit realization in terms of $q$-shift operators and reflections is proposed, which will be called the $\mathbb{Z}_2n$ $q$-Dirac-Dunkl model. The algebra $\mathcal{A}_nq$ is shown to arise as the symmetry algebra of the constructed $\mathbb{Z}_2n$ $q$-Dirac-Dunkl operator and to act irreducibly on modules of its polynomial null-solutions. An explicit basis for these modules is obtained using a $q$-deformed $\mathbf{CK}$-extension and Fischer decomposition.

Summary

We haven't generated a summary for this paper yet.