Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Human Inference of Others' Intentions in Complex Situations with Plan Predictability Bias (1805.06248v3)

Published 16 May 2018 in cs.AI

Abstract: A recent approach based on Bayesian inverse planning for the "theory of mind" has shown good performance in modeling human cognition. However, perfect inverse planning differs from human cognition during one kind of complex tasks due to human bounded rationality. One example is an environment in which there are many available plans for achieving a specific goal. We propose a "plan predictability oriented model" as a model of inferring other peoples' goals in complex environments. This model adds the bias that people prefer predictable plans. This bias is calculated with simple plan prediction. We tested this model with a behavioral experiment in which humans observed the partial path of goal-directed actions. Our model had a higher correlation with human inference. We also confirmed the robustness of our model with complex tasks and determined that it can be improved by taking account of individual differences in "bounded rationality".

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ryo Nakahashi (3 papers)
  2. Seiji Yamada (26 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.