Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The $\ell$-modular local Langlands correspondence and local factors (1805.05888v1)

Published 15 May 2018 in math.RT

Abstract: Let $F$ be a non-archimedean local field of residual characteristic $p$, $\ell\neq p$ be a prime number, and $\mathrm{W}F$ the Weil group of $F$. We classify the indecomposable $\mathrm{W}_F$-semisimple Deligne $\overline{\mathbb{F}\ell}$-representations in terms of the irreducible $\overline{\mathbb{F}_\ell}$-representations of $\mathrm{W}_F$, and extend constructions of Artin-Deligne local factors to this setting. Finally, we define a variant of the $\ell$-modular local Langlands correspondence which satisfies a preservation of local factors statement for generic representations.

Summary

We haven't generated a summary for this paper yet.