Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence, Uniqueness and Malliavin Differentiability of Lévy-driven BSDEs with locally Lipschitz Driver (1805.05851v2)

Published 15 May 2018 in math.PR

Abstract: We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a L\'evy process. In particular, we are interested in generators which satisfy a locally Lipschitz condition in the $Z$ and $U$ variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for L\'evy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value $\xi$ and its Malliavin derivative $D\xi$. Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in $U.$ BSDEs of the latter type find use in exponential utility maximization.

Summary

We haven't generated a summary for this paper yet.