Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deeply-Recursive Convolutional Network for Crowd Counting (1805.05633v1)

Published 15 May 2018 in cs.CV

Abstract: The estimation of crowd count in images has a wide range of applications such as video surveillance, traffic monitoring, public safety and urban planning. Recently, the convolutional neural network (CNN) based approaches have been shown to be more effective in crowd counting than traditional methods that use handcrafted features. However, the existing CNN-based methods still suffer from large number of parameters and large storage space, which require high storage and computing resources and thus limit the real-world application. Consequently, we propose a deeply-recursive network (DR-ResNet) based on ResNet blocks for crowd counting. The recursive structure makes the network deeper while keeping the number of parameters unchanged, which enhances network capability to capture statistical regularities in the context of the crowd. Besides, we generate a new dataset from the video-monitoring data of Beijing bus station. Experimental results have demonstrated that proposed method outperforms most state-of-the-art methods with far less number of parameters.

Citations (48)

Summary

We haven't generated a summary for this paper yet.