Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Access Computational Offloading: Communication Resource Allocation in the Two-User Case (Extended Version) (1805.04981v2)

Published 14 May 2018 in cs.IT and math.IT

Abstract: By offering shared computational facilities to which mobile devices can offload their computational tasks, the mobile edge computing framework is expanding the scope of applications that can be provided on resource-constrained devices. When multiple devices seek to use such a facility simultaneously, both the available computational resources and the available communication resources need to be appropriately allocated. In this manuscript, we seek insight into the impact of the choice of the multiple access scheme by developing solutions to the mobile energy minimization problem in the two-user case with plentiful shared computational resources. In that setting, the allocation of communication resources is constrained by the latency constraints of the applications, the computational capabilities and the transmission power constraints of the devices, and the achievable rate region of the chosen multiple access scheme. For both indivisible tasks and the limiting case of tasks that can be infinitesimally partitioned, we provide a closed-form and quasi-closed-form solution, respectively, for systems that can exploit the full capabilities of the multiple access channel, and for systems based on time-division multiple access (TDMA). For indivisible tasks, we also provide quasi-closed-form solutions for systems that employ sequential decoding without time sharing or independent decoding. Analyses of our results show that when the channel gains are equal and the transmission power budgets are larger than a threshold, TDMA (and the suboptimal multiple access schemes that we have considered) can achieve an optimal solution. However, when the channel gains of each user are significantly different and the latency constraints are tight, systems that take advantage of the full capabilities of the multiple access channel can substantially reduce the energy required to offload.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mahsa Salmani (6 papers)
  2. Timothy N. Davidson (8 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.