Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Augmented Skeleton Space Transfer for Depth-based Hand Pose Estimation (1805.04497v1)

Published 11 May 2018 in cs.CV

Abstract: Crucial to the success of training a depth-based 3D hand pose estimator (HPE) is the availability of comprehensive datasets covering diverse camera perspectives, shapes, and pose variations. However, collecting such annotated datasets is challenging. We propose to complete existing databases by generating new database entries. The key idea is to synthesize data in the skeleton space (instead of doing so in the depth-map space) which enables an easy and intuitive way of manipulating data entries. Since the skeleton entries generated in this way do not have the corresponding depth map entries, we exploit them by training a separate hand pose generator (HPG) which synthesizes the depth map from the skeleton entries. By training the HPG and HPE in a single unified optimization framework enforcing that 1) the HPE agrees with the paired depth and skeleton entries; and 2) the HPG-HPE combination satisfies the cyclic consistency (both the input and the output of HPG-HPE are skeletons) observed via the newly generated unpaired skeletons, our algorithm constructs a HPE which is robust to variations that go beyond the coverage of the existing database. Our training algorithm adopts the generative adversarial networks (GAN) training process. As a by-product, we obtain a hand pose discriminator (HPD) that is capable of picking out realistic hand poses. Our algorithm exploits this capability to refine the initial skeleton estimates in testing, further improving the accuracy. We test our algorithm on four challenging benchmark datasets (ICVL, MSRA, NYU and Big Hand 2.2M datasets) and demonstrate that our approach outperforms or is on par with state-of-the-art methods quantitatively and qualitatively.

Citations (79)

Summary

We haven't generated a summary for this paper yet.