Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite Element Approximation of a Strain-Limiting Elastic Model (1805.04006v3)

Published 10 May 2018 in math.NA and cs.NA

Abstract: We construct a finite element approximation of a strain-limiting elastic model on a bounded open domain in $\mathbb{R}d$, $d \in {2,3}$. The sequence of finite element approximations is shown to exhibit strong convergence to the unique weak solution of the model. Assuming that the material parameters featuring in the model are Lipschitz-continuous, and assuming that the weak solution has additional regularity, the sequence of finite element approximations is shown to converge with a rate. An iterative algorithm is constructed for the solution of the system of nonlinear algebraic equations that arises from the finite element approximation. An appealing feature of the iterative algorithm is that it decouples the monotone and linear elastic parts of the nonlinearity in the model. In particular, our choice of piecewise constant approximation for the stress tensor (and continuous piecewise linear approximation for the displacement) allows us to compute the monotone part of the nonlinearity by solving an algebraic system with $d(d+1)/2$ unknowns independently on each element in the subdivision of the computational domain. The theoretical results are illustrated by numerical experiments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.