Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Robust Search Strategies Using a Bandit-Based Approach (1805.03876v1)

Published 10 May 2018 in cs.AI

Abstract: Effective solving of constraint problems often requires choosing good or specific search heuristics. However, choosing or designing a good search heuristic is non-trivial and is often a manual process. In this paper, rather than manually choosing/designing search heuristics, we propose the use of bandit-based learning techniques to automatically select search heuristics. Our approach is online where the solver learns and selects from a set of heuristics during search. The goal is to obtain automatic search heuristics which give robust performance. Preliminary experiments show that our adaptive technique is more robust than the original search heuristics. It can also outperform the original heuristics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wei Xia (147 papers)
  2. Roland H. C. Yap (13 papers)
Citations (31)