Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Mechanism Design via Neural Networks (1805.03382v2)

Published 9 May 2018 in cs.AI and cs.GT

Abstract: Using AI approaches to automatically design mechanisms has been a central research mission at the interface of AI and economics [Conitzer and Sandholm, 2002]. Previous approaches that attempt to design revenue optimal auctions for the multi-dimensional settings fall short in at least one of the three aspects: 1) representation -- search in a space that probably does not even contain the optimal mechanism; 2) exactness -- finding a mechanism that is either not truthful or far from optimal; 3) domain dependence -- need a different design for different environment settings. To resolve the three difficulties, in this paper, we put forward -- MenuNet -- a unified neural network based framework that automatically learns to design revenue optimal mechanisms. Our framework consists of a mechanism network that takes an input distribution for training and outputs a mechanism, as well as a buyer network that takes a mechanism as input and output an action. Such a separation in design mitigates the difficulty to impose incentive compatibility constraints on the mechanism, by making it a rational choice of the buyer. As a result, our framework easily overcomes the previously mentioned difficulty in incorporating IC constraints and always returns exactly incentive compatible mechanisms. We then apply our framework to a number of multi-item revenue optimal design settings, for a few of which the theoretically optimal mechanisms are unknown. We then go on to theoretically prove that the mechanisms found by our framework are indeed optimal. To the best of our knowledge, we are the first to apply neural networks to discover optimal auction mechanisms with provable optimality.

Citations (84)

Summary

We haven't generated a summary for this paper yet.