Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Optimal Achievable Rates for Linear Computation With Random Homologous Codes (1805.03338v2)

Published 9 May 2018 in cs.IT and math.IT

Abstract: The problem of computing a linear combination of sources over a multiple access channel is studied. Inner and outer bounds on the optimal tradeoff between the communication rates are established when encoding is restricted to random ensembles of homologous codes, namely, structured nested coset codes from the same generator matrix and individual shaping functions, but when decoding is optimized with respect to the realization of the encoders. For the special case in which the desired linear combination is "matched" to the structure of the multiple access channel in a natural sense, these inner and outer bounds coincide. This result indicates that most, if not all, coding schemes for computation in the literature that rely on random construction of nested coset codes cannot be improved by using more powerful decoders, such as the maximum likelihood decoder. The proof techniques are adapted to characterize the rate region for broadcast channels achieved by Marton's (random) coding scheme under maximum likelihood decoding.

Citations (1)

Summary

We haven't generated a summary for this paper yet.