Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Structured Model for Fine-to-coarse Manifesto Text Analysis (1805.02823v1)

Published 8 May 2018 in cs.CL

Abstract: Election manifestos document the intentions, motives, and views of political parties. They are often used for analysing a party's fine-grained position on a particular issue, as well as for coarse-grained positioning of a party on the left--right spectrum. In this paper we propose a two-stage model for automatically performing both levels of analysis over manifestos. In the first step we employ a hierarchical multi-task structured deep model to predict fine- and coarse-grained positions, and in the second step we perform post-hoc calibration of coarse-grained positions using probabilistic soft logic. We empirically show that the proposed model outperforms state-of-art approaches at both granularities using manifestos from twelve countries, written in ten different languages.

Citations (13)

Summary

We haven't generated a summary for this paper yet.