Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-orthogonal Non-negative Matrix Factorization with an Application in Text Mining (1805.02306v3)

Published 7 May 2018 in stat.ME, cs.LG, and stat.ML

Abstract: Emergency Department (ED) crowding is a worldwide issue that affects the efficiency of hospital management and the quality of patient care. This occurs when the request for an admit ward-bed to receive a patient is delayed until an admission decision is made by a doctor. To reduce the overcrowding and waiting time of ED, we build a classifier to predict the disposition of patients using manually-typed nurse notes collected during triage, thereby allowing hospital staff to begin necessary preparation beforehand. However, these triage notes involve high dimensional, noisy, and also sparse text data which makes model fitting and interpretation difficult. To address this issue, we propose the semi-orthogonal non-negative matrix factorization (SONMF) for both continuous and binary design matrices to first bi-cluster the patients and words into a reduced number of topics. The subjects can then be interpreted as a non-subtractive linear combination of orthogonal basis topic vectors. These generated topic vectors provide the hospital with a direct understanding of the cause of admission. We show that by using a transformation of basis, the classification accuracy can be further increased compared to the conventional bag-of-words model and alternative matrix factorization approaches. Through simulated data experiments, we also demonstrate that the proposed method outperforms other non-negative matrix factorization (NMF) methods in terms of factorization accuracy, rate of convergence, and degree of orthogonality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.